Blood Pressure, Sex, and Female Sex Hormones Influence Renal Inner Medullary Nitric Oxide Synthase Activity and Expression in Spontaneously Hypertensive Rats
نویسندگان
چکیده
BACKGROUND We previously reported that sexually mature female spontaneously hypertensive rats (SHRs) have greater nitric oxide (NO) synthase (NOS) enzymatic activity in the renal inner medulla (IM), compared to age-matched males. However, the mechanisms responsible for this sexual dimorphism are unknown. The current study tested the hypothesis that sex differences in renal IM NOS activity and NOS1 expression in adult SHRs develop with sexual maturation and increases in blood pressure (BP) in a female sex hormone-dependent manner. METHODS AND RESULTS Renal IM were isolated from sexually immature 5-week-old and sexually mature 13-week-old male and female SHRs. Whereas NOS activity and NOS1 expression were comparable in 5- and 13-week-old male SHRs and 5-week-old female SHRs, 13-week-old females had greater NOS activity and NOS1 expression, compared to 5-week-old female SHRs and age-matched males. NOS3 expression was greater in 5-week-old than 13-week-old SHRs regardless of sex. Treatment with antihypertensive therapy (hydrochlorothiazide and reserpine) from 6 to 12 weeks of age to attenuate age-related increases in BP abolished the sex difference in NOS activity and NOS1 expression between sexually mature SHR males and females. To assess the role of female sex hormones in age-related increases in NOS, additional females were ovariectomized (OVX), and NOS activity was studied 8 weeks post-OVX. OVX decreased NOS activity and NOS1 expression. CONCLUSIONS The sex difference in renal IM NOS in SHR is mediated by a sex hormone- and BP-dependent increase in NOS1 expression and NOS activity exclusively in females.
منابع مشابه
Female sex hormones protect against salt-sensitive hypertension but not essential hypertension.
Initial studies found that female Dahl salt-sensitive (DS) rats exhibit greater blood pressure (BP) salt sensitivity than female spontaneously hypertensive rats (SHR). On the basis of the central role played by NO in sodium excretion and BP control, we further tested the hypothesis that blunted increases in BP in female SHR will be accompanied by greater increases in renal inner medullary nitri...
متن کاملSexual dimorphism in renal production of prostanoids in spontaneously hypertensive rats.
Male spontaneously hypertensive rats (SHR) have higher blood pressure, blunted pressure-natriuresis relationship, and accelerated progression of renal injury compared with female SHR. Renal medullary prostanoids mediate vascular tone, salt and water balance, and renin release and, as a result, are involved in the maintenance of renal blood flow and the pathogenesis of hypertension. The aim of t...
متن کاملRenal NOS activity, expression, and localization in male and female spontaneously hypertensive rats.
The goal of this study was to examine the status of the renal nitric oxide (NO) system by determining NO synthase (NOS) isoform activity and expression within the three regions of the kidney in 14-wk-old male and female spontaneously hypertensive rats (SHR). NOS activity, and NOS1 and NOS3 protein expressions and localization were comparable in the renal cortex and outer medulla of male and fem...
متن کاملSex and sex hormones influence the development of albuminuria and renal macrophage infiltration in spontaneously hypertensive rats.
There is a sex difference in hypertensive renal injury, with men experiencing greater severity and a more rapid progression of renal disease than women; however, the molecular mechanisms protecting against renal injury in women are unknown. The goal of this study was to determine whether sex hormones modulate blood pressure and the progression of albuminuria during the developmental phase of hy...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کامل